# Characterizing Outburst with Microseismic Amplitude Versus Angle Analysis 

Eugene Morgan ${ }^{1}$, Cai-Ping Lu ${ }^{2}$

${ }^{1}$ John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University
${ }^{2}$ State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology

## Introduction

- Amplitude Variation with Offset/Angle (AVO/AVA) analysis is a popular technique with seismic surveys for classifying gas reservoirs


CLASS 3


## Objective

- Can MS amplitude variation with angle separating sensor from source (rockburst or gas outburst) give us information about the hazardous layer?
- Can the reflectionbased methods be translated for transmission waves?



## Simplification of Zoeppritz Equations

 Reflection Coefficient:$R_{12}=\frac{A_{\mathrm{r}}}{A_{\mathrm{i}}}=\frac{I_{1}-I_{2}}{I_{2}+I_{1}}=\frac{\rho_{1} V_{1}-\rho_{2} V_{2}}{\rho_{2} V_{2}+\rho_{1} V_{1}}$
Transmission Coefficient:

$$
T_{12}=\frac{A_{\mathrm{t}}}{A_{\mathrm{i}}}=\frac{2 I_{1}}{I_{2}+I_{1}}=\frac{2 \rho_{1} V_{1}}{\rho_{2} V_{2}+\rho_{1} V_{1}}
$$

Ray Parameter (Snell's Law):


$$
p=\frac{\sin \theta_{1}}{V_{\mathrm{P} 1}}=\frac{\sin \theta_{2}}{V_{\mathrm{P} 2}}=\frac{\sin \theta_{\mathrm{S} 1}}{V_{\mathrm{S} 1}}=\frac{\sin \theta_{\mathrm{S} 2}}{V_{\mathrm{S} 2}}
$$

Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. San Francisco, CA: W. H. Freeman and Co.

## Simplification of Zoeppritz Equations



[^0]
## Shuey's Approximation

$$
\begin{gathered}
R(\theta) \approx R(0)+G \sin ^{2} \theta \\
\theta=\left(\theta_{1}+\theta_{2}\right) / 2 \approx \theta_{1} \\
R(0)=\frac{1}{2}\left(\frac{\Delta V_{p}}{V_{p}}+\frac{\Delta \rho}{\rho}\right) \leftarrow \\
G=\frac{1}{2} \frac{\Delta V_{p}}{V_{p}}-2 \frac{V_{s}^{2}}{V_{p}^{2}}\left(\frac{\Delta \rho}{\rho}+2 \frac{\Delta V_{s}}{V_{s}}\right) \leftarrow \\
= \\
R(0)-\frac{\Delta \rho}{\rho}\left(\frac{1}{2}+2 \frac{V_{s}^{2}}{V_{p}^{2}}\right)-4 \frac{V_{s}^{2}}{V_{p}^{2}} \frac{\Delta V_{s}}{V_{s}} \\
\Delta \rho=\rho_{2}-\rho_{1} \quad \rho=\left(\rho_{2}+\rho_{1}\right) / 2 \\
\Delta V_{p}=V_{p 2}-V_{p 1} \quad V_{p}=\left(V_{p 2}+V_{p 1}\right) / 2 \\
\Delta V_{s}=V_{s 2}-V_{s 1} \quad V_{s}=\left(V_{s 2}+V_{s 1}\right) / 2
\end{gathered}
$$

Normal-incidence reflection coefficient:

- controlled by impedance contrast

Reflection at intermediate angles between normal and critical angle:

- controlled by impedance \& Poisson's ratio

This linear relationship is typically fit via Least Squares

SHUEY, R. T. A Simplification of the Zoeppritz Equations. Geophysics 50, 609-614 (1985).

## For Transmitted P-Wave...

$$
\begin{aligned}
T(\theta) & =1-\frac{1}{2} \frac{\Delta \rho}{\rho}+\left(\frac{1}{2 \cos ^{2} \theta}-1\right) \frac{\Delta V_{p}}{V_{p}} \\
& =1-\left[\frac{1}{2}\left(\frac{\Delta \rho}{\rho}+\frac{\Delta V_{p}}{V_{p}}\right)\right]+\frac{1}{2} \frac{\Delta V_{p}}{V_{p}}\left(\frac{1}{\cos ^{2} \theta}-1\right) \\
& \approx \frac{2 I_{1}}{I_{2}+I_{1}}+\underbrace{\frac{V_{p 2}-V_{p 1}}{V_{p 2}+V_{p 1}}\left(\frac{1}{\cos ^{2} \theta}-1\right)}_{\text {Intercept }} \underbrace{\begin{array}{c}
\text { Independent } \\
\text { Variable }
\end{array}}_{\text {Slope }}
\end{aligned}
$$

## MS Dataset

- 16 MS Sensors placed in mine
- Junde coal mine, Nov 24, 2012:
- Rockburst at 18:24
- Gas outburst at 20:28


Lu, C.-P., Dou, L.-M., Zhang, N., Xue, J.-H., \& Liu, G.-J. (2014). Microseismic and acoustic emission effect on gas outburst hazard triggered by shock wave: a case study. Natural Hazards, 73(3), 1715-1731. doi:10.1007/s11069-014-1167-7

## Some Assumptions

- Max. amplitude is associated with transmitted P-wave
- Coal and surrounding rock are each homogeneous and isotropic
- Critical angle $=40^{\circ}$ : sensors outside of this omitted
- Variation in angle with respect to vertical direction is negligible
- Spherical divergence correction


## Peak Amplitude vs. Angle



- Rockburst:
- Significant negative slope:
- Vp of rockburst layer greater than Vp of surrounding rock
- Larger intercept:
- Greater impedance of rockburst layer
- Gas outburst:
- Slight positive slope
- Slightly greater Vp of surrounding rock
- Small intercept
- Gas outburst in lower impedance layer


## Directivity



- Angle of gas outburst source from rockburstsource coincides with largest rockburst amplitude
- Rockburst directs energy coaxially
- Gas outburst is isotropic


## Intensity

- Calculated as:

- Implies same directivity effect



## Conclusions

- Can simplify Zoeppritz equations to get transmission coefficient in linear form
- Angle in independent variable
- Slope is function of Vp
- Intercept is function of Vp and density (impedance)
- AVA analysis can tell us properties of rock/gas outburst layers
- Measure angle between MS sensors and sources
- Pick amplitude from MS time series
- Directivity effect in rockburst may inform about location of gas outburst in future
- Gives an indication of redistributed stresses


## Thank you! xle xle!

## @uestions?


[^0]:    Freeman aıu co.

