Measuring Attenuation	Hierarchical Model		

Characterizing subsurface gas through Bayesian inversion of a seismic attenuation model

Eugene Morgan

eugene.morgan@psu.edu

December 5, 2014

JOHN AND WILLIE LEONE FAMILY Department of Energy and Mineral Engineering

PETROLEUM AND NATURAL GAS ENGINEERING

COLLEGE OF EARTH AND MINERAL SCIENCES

T.I.I.	(C I		
00000			
Introduction			

Table of Contents

Introduction

Motivation Attenuation

2 Measuring Attenuation

Spectral Ratio Method Finneidfjord

3 Hierarchical Model

Method Finneidfjord

A Bayesian Updating

CO₂ release experiment Bayesian Updating

Genetic Algorithm

Method Blake Ridge Finneidfjord

6 Conclusions

SQA

Maarten Vanneste, NGI Mark Vardy, Southampton Introduction

Measuring Attenuation

Hierarchical Mod

B<mark>ayesian Updatin</mark> DOOOOOOO Genetic Algorit

・ロト ・回ト ・ヨト ・ヨ

Conclusions

590

Motivation

Introduction

Aeasuring Attenuation

Hierarchical Mode

Bayesian Updatin 00000000 Genetic Algorith

Conclusions

Motivation

Attenuation of seismic reflection signals

In: Morgan et al. (2010).

The P-wave attenuation model of Carcione and Picotti (2006)

13 parameters in set θ define the attenuation curve (left):

I pick $Q(\theta)$ as the minimum Q of the curve within the range of seismic frequencies.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Sac

Attenuation model is nonlinear and multimodal

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction ○○○○○●	Measuring Attenuation	Hierarchical Model		
Method	overview			

Our goal is to link the theoretical attenuation model to observations of attenuation from seismic data. This is a two step process:

- 1 Measure quality factor (Q) from seismic data
- Invert model: find set of parameters (θ) that match modeled Q(θ) to measured Q̂. Here, I explore two ways to do this:
 - **1** Genetic algorithm (Morgan et al., 2012)
 - 2 Bayesian hierarchical model (Morgan et al., 2014)

I validate the genetic algorithm method at the well-studied Blake Ridge (offshore the Carolinas) where free gas lies below gas hydrate. I test both inversion methods at Finneidfjord, Norway, where gas exists at a much shallower depth and in smaller concentration.

Measuring attenuation

•

Measuring Attenuation

Measure quality factor Q from seismic data using spectral ratio method

	Measuring Attenuation ○●	Hierarchical Model		
Finneid	fiord			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 000000 Measuring Attenuation

Hierarchical Mod

Bayesian Updating

Genetic Algorithm

Conclusions

Bayesian Hierarchical Model

With $\hat{Q} = (\hat{Q}_1, \ldots, \hat{Q}_m)^T$ measured at *m* locations (traces) with unknown parameter values $\theta = (\theta_1, \ldots, \theta_m)^T$, where each θ_i is a vector containing values for each of the 13 parameters,

$$\hat{Q}=Q(heta)+e.$$

 $Q(\theta)$ is the attenuation forward model ("simulator") and e contains both measurement error from \hat{Q} and model error from $Q(\theta)$. Then, our joint posterior is:

 $p(\theta|\hat{Q}) \propto L(\hat{Q}|Q(\theta)) \times \pi(\theta),$

with likelihood coming from assuming e is Gaussian with zero mean:

$$\mathcal{L}(\hat{Q}|Q(heta)) \propto \exp\left(-rac{1}{2\sigma^2}(\hat{Q}-Q(heta))^{T}(\hat{Q}-Q(heta))
ight),$$

where σ is the standard deviation of \hat{Q} .

The prior contains the spatial smoothness constraint^a that our random variables behave as a Markov random field over space:

$$\pi(heta) \propto \exp\left(eta \sum_{i \sim j} u(heta_i - heta_j)
ight),$$

where the sum is over all sets of nearest neighbors $(i \sim j)$ and

$$u(d) = \begin{cases} \frac{1}{s}(1 - (d/s)^3)^3, & \text{if } -s < d < s \\ 0, & \text{if } |d| \ge s \end{cases}$$

is the tricube function. Pragmatically, $\beta = 0.5$ and s = 0.3 work well. The distance between vectors $(d = \theta_i - \theta_j)$ is found via Mahalanobis distance with the covariance matrix Σ_{θ} set *a priori*.

^aHigdon, D., Reese, C.S., Moulton, J.D., Vrugt, J.A., and Fox, C. 2008. Posterior exploration for computationally intensive forward models. In: Handbook of Markov Chain Monte Carlo. Boca Raton, Florida: CRC Press.

MCMC: Single-site Metropolis Algorithm

Pseudo-code: initialize θ for k = 1: niter do for i = 1: m do $\theta'_i = \theta_i + z$, where $z \sim MVTN(0, \Sigma_{\theta}, a, b)$ if $u < \frac{p(\theta'|\hat{Q})}{p(\theta|\hat{Q})}$, where $u \sim U(0,1)$ then $\theta_i \leftarrow \theta'_i$ end if end for end for

At Finneidfjord we have m = 83 locations, set niter = 100,000, use burn-in of 10,000, and keep every $10^{th} \theta_i$ after that. We get an acceptance rate of 49%.

Measuring Attenuation

Hierarchical Model

B<mark>ayesian Updatin</mark>; 00000000 Genetic Algorithn

Conclusions

Sample Space

Initial guesses (θ_1) and bounds taken from literature or geometry of seismic data:

			Global (bot	h sites)		
	Lower	bound	Initial	value	Upper	bound
Gas saturation S_g (%)	0		1		100	
Porosity ϕ	0.38	а	0.55		0.73	а
Permeability κ (Darcy)	10^{-8}	а	10 ⁰		10 ⁵	а
Solid grain bulk modulus K_s (GPa)	20	Ь	30		70	Ь
Solid grain shear modulus μ_s (GPa)	5	Ь	13		50	Ь
Solid grain density ρ_s (g/cc)	2.55	Ь	2.65		2.71	Ь
Water bulk modulus K _w (GPa)	2.00		2.25	с	2.50	
Water density ρ_w (g/cc)	1.000		1.025		1.030	
Water viscosity η_w (Pa·s)	0.001		0.003	с	0.005	
Gas viscosity $\eta_g~(10^-4 \text{ Pa}\cdot\text{s})$	1.0		1.5	с	2.0	
		3lake Ridg	e	F	inneidfjor	d
	Lower	Initial	Upper	Lower	Initial	Upper
	bound	value	bound	bound	value	bound
Total pressure P (MPa)	\sim 32.41	\sim 32.93	~ 35.19	~ 0.55	~ 0.77	~ 2.93
Temperature T (°C)	11	12	16	0	5	10
Layer thickness d (m)	70	75	80	36.5	37.5	38.5
² Cabin (1006)						

^a Schön (1996)

^b Mavko et al. (1998)

^c Carcione and Picotti (2006)

Bounds represent likely or possible conditions, and make the inversion a constrained optimization problem.

Gas saturation posterior distributions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

	Hierarchical Model ○○○○○●○		

Pressure posterior distributions

◆□> ◆□> ◆目> ◆目> ◆目> ○ QQで

Introduction
occosionMeasuring AttenuationHierarchical Model
occosionBayesian Updating
occosionGenetic Algorithm
occConclusions
occArdmucknish Bay, Oban, Scotland: CO2 release experiment

590

Image: A matched block

Figure from Cevatoglu et al. (in review)

Bayesian Updating for CO₂ Injection

Goal: Estimate gas storage over time.

- Use Bayesian Updating with seismic attenuation:
 - Dp: feed in naive priors, get posteriors (without gas saturation)
 - D12: feed in posteriors from Dp as priors, get new posteriors (with gas saturation)
 - Repeat over future surveys

Begin with prior based on geologic knowledge of system at Dp with random variables θ_p :

$$\pi(\theta_{p}) \sim MVTN(\mu_{p}, \Sigma_{p}, a_{p}, b_{p})$$
(1)

Fit model to Dp data:

$$p(\theta_p | \hat{Q}_p) \propto L(\hat{Q}_p | Q(\theta_p)) \times \pi(\theta_p)$$
(2)

where

$$L(\hat{Q}|Q(\theta)) \propto \exp\left(-\frac{1}{2\sigma^2}(\hat{Q}-Q(\theta))^T(\hat{Q}-Q(\theta))\right)$$
(3)
$$\sigma = 2$$
(4)

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Introduction Measuring Attenuation Hierarchical Model Bayesian Updating Genetic Algorithm Conclusions Bayesian Updating scheme (cont'd)

Update with D12 data, using both posterior of Dp and expert knowledge of new variables (θ_{new}) to define prior:

$$p(\theta_{12}|\hat{Q}_{12}) \propto L(\hat{Q}_{12}|Q(\theta_{12})) \times \pi(\theta_{12})$$
(5)

$$\pi(\theta_{12}) \sim MVTN(\mu_{12}, \Sigma_{12}, a_{12}, b_{12})$$
 (6)

$$\boldsymbol{\mu}_{12} = [\overline{\boldsymbol{p}(\theta_p)}, \mu_{new}] \tag{7}$$

$$\Sigma_{12} = \begin{bmatrix} \operatorname{cov}(p(\theta_p)) & \Sigma_{p,new} \\ \Sigma_{new,p} & \Sigma_{new} \end{bmatrix}$$
(8)

$$a_{12} = [a_p, a_{new}] \tag{9}$$

$$b_{12} = [b_p, b_{new}]$$
 (10)

200

Repeat at next time step:

$$p(\theta_{34}|\hat{Q}_{34}) \propto L(\hat{Q}_{34}|Q(\theta_{34})) \times \pi(\theta_{34})$$
(11)
$$\pi(\theta_{34}) \sim MVTN(\overline{p(\theta_{12})}, \operatorname{cov}(p(\theta_{12})), a_{12}, b_{12})$$
(12)

Sac

Continue with more data as it becomes available during gas injection. This process gains strength over time as priors become more informed, but is also flexible to adapt to changing conditions as they appear in the data (\hat{Q}) .

0.0 0.4 0.8 Gas Saturation

0.0 0.4 0.8

Gas Saturation

Gas Saturation

0.0 0.4 0.8

 $\mathcal{O} \land \mathcal{O}$

Results: Volume of Gas at D12

- Observed: (800 kg)(1 - 0.15 seepage rate^a) / 2.8 kg/m³ (for CO₂ at 0.15 MPa and 12 $^\circ\text{C}$

Bayesian Updating

• Posterior:
$$\sum_{i=\text{layers}} \phi_i \times S_{g,i} \times h_i \times (A = 10\text{m}^2)^{\text{b}}$$

Volume of gas in place (m^3)

э

Sac

^aBlackford et al. (2014). Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. *Nature Climate Change*. DOI: 10.1038/NCLIMATE2381.

Cevatoglu et al. (*in review*). Gas migration pathways, controlling mechanisms and changes in sediment physical properties observed in a controlled sub-seabed CO2 release experiment $\square \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle \rightarrow \langle \square \rangle$

Introduction Measuring Attenuation Hierarchical Model Bayesian Updating Genetic Algorithm

Invert attenuation model to get gas saturation estimates

	Measuring Attenuation	Hierarchical Model	Genetic Algorithm ○○●	
Finneidf	jord			

Trace Number

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

	Measuring Attenuation	Hierarchical Model		Conclusions •00
Conclus	ions			

Seismic data can offer first-order estimates of gas properties over wide areas.

- Here, we estimate gas saturation and pressure by inverting attenuation model
 - No borehole data needed no calibration required
 - Constrain the parameter space by realistic values from literature and seismic data
- Our estimates of S_g generally agree with borehole data at Blake Ridge, as well as between inversion methods
- Give reasonable gas volumes at Oban CO_2 injection site
- This methods work in shallower environments; are sensitive to small $\mathcal{S}_{\rm g}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	Measuring Attenuation	Hierarchical Model		Conclusions
Conclus	sions			

Compare how methods perform with attenuation model:

- Genetic Algorithm
 - Precise
 - Doesn't explore all modes well
 - Treats traces independently
 - Quick (can parallelize traces)
- Bayesian Hierarchical Model
 - Accounts for spatial correlation
 - Posteriors show modes
 - Slow (can't parallelize)

Bayesian Updating at single site gathers strength over time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- More data is always better
- Priors refine over time
- Posterior uncertainty lessens over time

			Conclusions
Referen	ces		

- Carcione, J. M., Picotti, S., 2006. P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties. Geophysics 71 (3), no. 3, O1–O8.
- Mavko, G., Mukerji, T., Dvorkin, J., 1998. The rock physics handbook: tools for seismic analysis in porous media. Stanford-Cambridge program. Cambridge University Press.
- Morgan, E. C., Vanneste, M., Lecomte, I., Baise, L. G., Longva, O., McAdoo, B., 2012. Estimation of free gas saturation from seismic reflection surveys by the genetic algorithm inversion of a p-wave attenuation model. Geophysics 77 (4), R175–R187. URL http://link.aip.org/link/?GPY/77/R175/1
- Morgan, E. C., Vanneste, M., Longva, O., Lecomte, I., McAdoo, B., Baise, L., 2010. Evaluating gas-generated pore pressure with seismic reflection data in a landslide-prone area: An example from finneidfjord, norway. In: Mosher, D. C., Shipp, R. C., Moscardelli, L., Chaytor, J. D., Baxter, C. D. P., Lee, H. J., Urgeles, R. (Eds.), Submarine Mass Movements and Their Consequences. Vol. 28 of Advances in Natural and Technological Hazards Research. pp. 399–410, 4th International Symposium on Submarine Mass Movements and Their Consequences, Jackson Sch Geosci, Bur Econ Geol, Austin, TX, Nov 07-12, 2009.
- Morgan, E. C., Vanneste, M., Vardy, M., 2014. Characterization of the slope-destabilizing effects of gas-charged sediments via seismic surveys. In: OTC, 2014. p. 8, paper 25196.

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Schön, J., 1996. Physical properties of rocks: fundamentals and principles of petrophysics. Handbook of geophysical exploration: Seismic exploration. Pergamon.