	The Model 000	The Data 00	Model Fitting O	
Big D	ata in Oil ar	nd Gas: An A	pplication of T	ïme

Forecasting of Production from Marcellus Wells

Eugene Morgan

eugene.morgan@psu.edu

September 7, 2017

JOHN AND WILLIE LEONE FAMILY Department of energy and mineral engineering

PETROLEUM AND NATURAL GAS ENGINEERING

COLLEGE OF EARTH AND MINERAL SCIENCES

Introduction •0000	The Model	The Data 00	Model Fitting 0	
Estimating	Reservoir Pr	oduction		

Methods to predict production (flow rate) from a well penetrating a reservoir:

- Volumetric
 Calculation
- Material Balance
- Reservoir Simulation
- Decline Curves

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Introduction 00000	The Model	The Data 00	Model Fitting O	
Decline Cu	rves			

- Initially developed for conventional reservoirs
- Challenge to find one that works well for shale gas reservoirs (and unconventionals in general)
 - Hetergeneous porosity and permeability
 - Micro-permeability in shale matrix has different physics governing fluid flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Figure is from Gong et al. (2014), which proposes Bayesian approach. Modified Bootstrap Method was proposed by Cheng et al. (2010).

590

ж

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $q(t; \theta)$ be a generic term for any decline curve modeling flow rate q over time t. The shape of the curve is defined by a set of parameters θ . Therefore, the observed flow rates q_t are:

$$\ln(q_t) = \ln(q(t;\theta)) + \epsilon_t \tag{1}$$

$$\theta \sim \pi(\beta)$$
 (2)

$$\epsilon_t \sim N(0, \sigma_\epsilon = 1/\sqrt{\tau})$$
 (3)

$$\tau \sim \mathsf{Gamma}(0.001, 0.001) \tag{4}$$

 $\pi(\beta)$ is generically describing the set of prior distributions for the decline curve parameters.

To add in a first-order autoregressive term:

$$q_t = q(t;\theta) + v_t \tag{5}$$

$$\mathbf{v}_t = \phi \mathbf{v}_{t-1} + \epsilon_t \tag{6}$$

$$\theta \sim \pi(\beta)$$
 (7)

$$\epsilon_t \sim N(0, \sigma_\epsilon = 1/\sqrt{\tau})$$
 (8)

$$\tau \sim \mathsf{Gamma}(0.001, 0.001) \tag{9}$$

$$\phi \sim N(0,1) \tag{10}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

00000	00•	00	0	000000		
Decline Curve Parameter Prior Distributions						

Defining $\theta \sim \pi(\beta)$:

Decline Curve Name	Functional Form	Prior Distributions for Parameters
Exponential	$a_{t} = a_{t} \exp(-D_{t}t)$	$q_i \sim lognormal(q_1, log_{10}(exp(q_1)))$
	41 41-14(-1-)	$D_i \sim \text{lognormal}(\ln(-(q_2 - q_1)), 1)$
Hyperbolic /Harmonic	$(1 + D + i)^{-1/b}$	q _i , D _i as above
Typerbolic/Traffiolite	$q_t = q_i(1 + D_i bt)$	$b \sim \text{lognormal}(0, 2)$
		q _i , D _i as above
Power Law Loss-ratio	$q_t = q_i \exp(-D_\infty t - D_i t^n)$	$D_{\infty} \sim \log normal(ln(1e^{-5}), 0.2)$
		$n \sim uniform(0, 1)$
Stratched Exponential	$a = a \exp(-(t/\pi)^n)$	q _i , n as above
Stretched Exponential	$q_t = q_i \exp(-(t/\tau))$	$\tau \sim \text{lognormal}(2, 1)$
		$K \sim \text{lognormal}(14, 3)$
Logistic Growth	$q_t = Knt^{n-1}/(a+t^n)^2$	$n \sim \log n mal(ln(0.9), 10)$
		$a \sim \text{lognormal}(4, 2)$

Bayesian regression is performed via Gibbs sampling (JAGS), with 8 chains running for 50,000 iterations. The first 25,000 samples are discarded ("burn-in"), and every 100th sample thereafter is retained ("thinning"), leaving 2,000 samples from the posterior distributions.

• 2,467 wells in all

・ロト ・聞ト ・ヨト ・ヨト

590

э

47-005-00885

Of the 2,467 total wells, 1,007 wells with continuous records of at least 3 years in duration were selected for analysis. $\mathbb{R} \to \mathbb{R} \to \mathbb{R$

	The Model	The Data 00	Model Fitting •	
МСМС				

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Example: API 47-033-05143, Harrison County, WV

590

э

ъ

<u>_</u>				
	The Model	The Data 00	Model Fitting O	Results

Summary of all 1,007 wells

DQC

ł

	The Model	The Data	Model Fitting	Results
	000	00	0	○○●○○○○
Hypothesis	Testing			

One-sided paired t-tests:

• Means of differences:

	Exp	Нур	Pow	Str	Log
DIC w/ AR1 < DIC w/o AR1	-4.81	-3.02	-7.47	-6.20	-17.68
MAPE w/ AR1 < MAPE w/o AR1	-2.45	-1.99	-2.90	0.22	-1.76
CR - 0.8 /0.8 w/ AR1 < CR - 0.8 /0.8 w/o AR1	-0.01	-0.04	-0.11	-0.06	-0.14

• p-values:

	Exp	Нур	Pow	Str	Log
DIC w/ AR1 < DIC w/o AR1	3.6e-60	2.9e-21	1.1e-64	1.1e-61	6.4e-114
MAPE w/ AR1 < MAPE w/o AR1	1.9e-05	4.8e-05	0.0063	0.73	0.051
CR - 0.8 /0.8 w/ AR1 < CR - 0.8 /0.8 w/o AR1	0.00031	3.1e-20	3.4e-47	1.7e-28	2.6e-97

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

э

	The Model 000	The Data 00	Model Fitting o	Results
Conclusion				

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

	The Model	The Data 00	Model Fitting 0	Results
References				

- Cheng, Y., Wang, Y., McVay, D., Lee, W. J., Apr. 2010. Practical Application of a Probabilistic Approach to Estimate Reserves Using Production Decline Data. SPE Economics & Management 2 (01), 19–31.
- Gong, X., Gonzalez, R., McVay, D. A., Hart, J. D., Dec. 2014. Bayesian Probabilistic Decline-Curve Analysis Reliably Quantifies Uncertainty in Shale-Well-Production Forecasts. Spe Journal 19 (06), 1,047–1,057.

▲□▶▲□▶▲□▶▲□▶ □ の�?