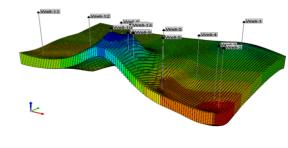
Incipient Virtual Asset: Examining Trends in Marcellus Production Across Space and Time

Eugene Morgan

eugene.morgan@psu.edu

February 16, 2018

JOHN AND WILLIE LEONE FAMILY Department of Energy and Mineral Engineering


PETROLEUM AND NATURAL GAS ENGINEERING

COLLEGE OF EARTH AND MINERAL SCIENCES

Estimating Reservoir Production

Common methods to estimate ultimate recovery from a well penetrating a reservoir:

- Volumetric Calculation
- Material Balance
- Reservoir Simulation
- Decline Curves

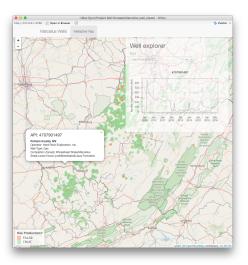
Decline Curves

Observation/Assumption

With all else being the same, well production will decrease as reservoir pressure decreases over time.

- Initially developed for conventional reservoirs
- Challenge to find one that works well for shale gas reservoirs (and unconventionals in general)
 - Hetergeneous porosity and permeability
 - Micro-permeability in shale matrix has different physics governing fluid flow
 - Higher degree of variability in operational practices among wells in same play

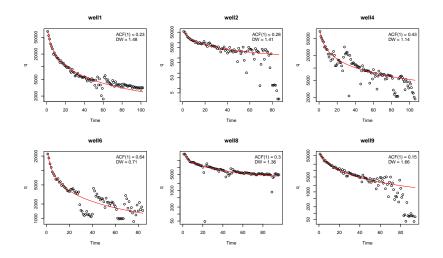
Decline Curve Models


Decline Curve Name	Functional Form	Prior Distributions for Parameters			
Exponential	$q_t = q_i \exp(-D_i t)$	$egin{aligned} q_i &\sim lognormal(q_1, log_{10}(exp(q_1)) \ D_i &\sim lognormal(ln(-(q_2-q_1)), 1) \end{aligned}$			
Hyperbolic/Harmonic	$q_t = q_i (1 + D_i bt)^{-1/b}$	q_i, D_i as above $b \sim ext{lognormal}(0, 2)$			
Power Law Loss-ratio	$q_t = q_i \exp(-D_\infty t - D_i t^n)$	q_i, D_i as above $D_{\infty} \sim \text{lognormal}(\ln(1e^{-5}), 0.2)$ $n \sim \text{uniform}(0, 1)$			
Stretched Exponential	$q_t = q_i \exp(-(t/\tau)^n)$	q_i, n as above $ au \sim lognormal(2, 1)$			
Logistic Growth	$q_t = Knt^{n-1}/(a+t^n)^2$	$K \sim \text{lognormal}(14, 3)$ $n \sim \text{lognormal}(\ln(0.9), 10)$ $a \sim \text{lognormal}(4, 2)$			
Duong's Model	$q_t = q_i t^{-m} \exp((a/(1-m))(t^{1-m}-1)) + q_\infty$	$\begin{array}{l} q_i \text{ as above} \\ m \sim \text{ normal}(1.5, 0.25) \\ a \sim \text{ normal}(1.15, 0.1) \\ q_{\infty} \sim \text{ exponential}(5/\min(q_t)) \end{array}$			

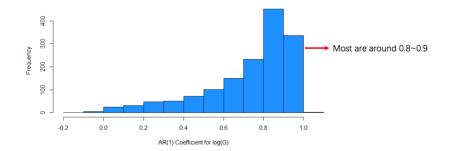
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What production rate behavior is captured in decline models? What is not?

- What structure remains in model error?
- Well-to-well, are model coefficients independent?


Virtual Asset: Data Exploration

- Restrict search to WV
- Only wells completed in Marcellus
- 3,244 wells in all


Sac

Autocorrelation in Decline Curve (Hyperbolic) Residuals

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Large Autocorrelation Coefficients

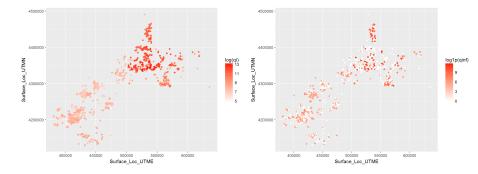
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Including AR(1) Only Gives Incremental Gains

One-sided paired t-tests:

• Means of differences:

	Exp	Нур	Pow	Str	Log
DIC w/ AR1 < DIC w/o AR1	-4.81	-3.02	-7.47	-6.20	-17.68
MAPE w/ AR1 < MAPE w/o AR1		-1.99	-2.90	0.22	-1.76
CR - 0.8 /0.8 w/ AR1 < CR - 0.8 /0.8 w/o AR1		-0.04	-0.11	-0.06	-0.14


• p-values:

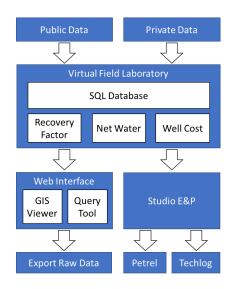
	Exp	Нур	Pow	Str	Log
DIC w/ AR1 < DIC w/o AR1	3.6e-60	2.9e-21	1.1e-64	1.1e-61	6.4e-114
MAPE w/ AR1 < MAPE w/o AR1	1.9e-05	4.8e-05	0.0063	0.73	0.051
CR - 0.8 /0.8 w/ AR1 < CR - 0.8 /0.8 w/o AR1	0.00031	3.1e-20	3.4e-47	1.7e-28	2.6e-97

- Largest improvements gained from adding AR1 component:
 - DIC: Logistic Growth
 - MAPE: Power Law Loss-ratio
 - CR: Logistic Growth

Marcellus Production Analysis

Decline Curve Parameters are Spatially (Cross-) Correlated

Show geostats in Virtual Asset!


э

Sac

- There often exists significant auto-correlation in the residuals of decline curve fits
- Decline curve parameters show spatial correlation
- Next:
 - What about spatial correlation in the residuals?
 - What about relationships with exogenous variables?

Virtual Asset: Bigger Picture

- More than just a database: opportunity to present research in interactive way
- Research objectives:
 - Decision support for operators
 - Enhanced predictive tools, especially at candidate well sites
 - Inference on treatments/procedures
- Educational tie-in:
 - Internships
 - Bring real, modern data (and data science methods) into classroom