
 
Please fill in the name of the event 
you are preparing this manuscript 
for. 

SPE Eastern Regional Meeting, 2018 

Please fill in your 6-digit SPE 
manuscript number. SPE-191788-MS 

Please fill in your manuscript title. Accounting for Serial Autocorrelation in Decline Curve Analysis of Marcellus Shale 
Gas Wells 

Please fill in your author name(s) and company affiliation. 
Given Name Surname Company 

Eugene Morgan The Pennsylvania State University 
   
   
   
   
   
   

 

This template is provided to give authors a basic shell for preparing your manuscript for submittal to an SPE meeting or 
event. Styles have been included (Head1, Head2, Para, FigCaption, etc) to give you an idea of how your finalized paper will 
look before it is published by SPE. All manuscripts submitted to SPE will be extracted from this template and tagged into an 
XML format; SPE’s standardized styles and fonts will be used when laying out the final manuscript. Links will be added to 
your manuscript for references, tables, and equations. Figures and tables should be placed directly after the first paragraph 
they are mentioned in. The technical content of your paper WILL NOT be changed. Please start your manuscript below. 

 
Abstract 

Current decline models fail to capture all of the behavior in shale gas production histories. That is, upon 
fitting one of these models, one often sees significant and sustained deviation of the flow rate data points 
from the decline trend. One way to measure this “lost signal” is to look at the autocorrelation in the 
residuals about the fitted decline model. Indeed, with many shale gas wells we see significant amounts of 
autocorrelation, especially when comparing the flow rate at one time to the next (lag one). Theoretically, 
this serially autocorrelated error can impact decline curve analysis in two ways: 1) inefficient estimation 
of decline curve parameters, and 2) lost signal in the data. Borrowing from time series statistics, there are 
two conventional ways of dealing with these potential problems: 1) estimate the decline curve parameters 
with generalized least squares or generalized nonlinear least squares, and 2) fitting an ARMA model to 
the residuals and adding it to the fitted decline curve.  

This paper investigates the practical implications of these two procedures by exercising them over 
decline curves fit to 8,527 Marcellus shale gas wells (all wells from that play with viable data for the 
analysis). The study explores the effect that generalized regression methods and ARMA-modeled 
residuals have on six different decline curves, and performance is measured in terms of sum of squared 
residuals (a metric for goodness-of-fit, calculated on the training data (first 24 months of each record)) 
and mean absolute percent error (a standard metric for forecasting accuracy, calculated on the testing data 
(all production rates after 24 months)).  

We find that inclusion of the ARMA-modeled residuals largely improves the goodness-of-fit for any 
decline curve, and improves the forecasting accuracy for the Hyperbolic decline curve and Duong’s model. 
The use of generalized least squares or generalized nonlinear least squares has little benefit in fitting the 
decline curves, except for the Logistic Growth model, where it improves both fit and forecasting accuracy. 

 
Introduction 

Decline curve analysis (DCA) serves as a popular method for determining EUR and forecasting 
production. By only requiring past production rate data, DCA has an advantage over other methods (Seidle 
et al. 2016). The initial decline curves were designed for conventional reservoirs by Arps (1945) in two 
forms: the Exponential model, 
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𝑞" = 𝑞$exp(−𝐷$𝑡), ………………………………………………………………………………….. (1) 
and the Hyperbolic/Harmonic model, 
𝑞" = 𝑞$(1 + 𝐷$𝑏𝑡)12/4, ……………………………………………………………………………... (2) 

where 0 < 𝑏 < 1 is hyperbolic and 𝑏 = 1 is harmonic. Many unconventional wells show 𝑏 > 1. Some 
modern advances are designed for shale gas production, such as the Power Law Loss-ratio model (Ilk et 
al. 2008), 
𝑞" = 𝑞$exp(−𝐷8𝑡 − 𝐷$𝑡9), ………………………………………………………………………… (3) 

the Stretched Exponential (Valko and Lee 2010), 
𝑞" = 𝑞$exp(−(𝑡/𝜏)9), ……………………………………………………………………………… (4) 

the Logistic Growth model (Clark et al. 2011), 
𝑞" = 𝐾𝑛𝑡912/(𝑎 + 𝑡9)>, …………………………………………………………………………… (5) 

and Duong’s model (Duong 2011), 

𝑞" = 𝑞$𝑡1?𝑒
A

BCD("
BCD12) + 𝑞8. …………………………………………………………………….. (6) 

In all of the above equations, our independent variable is time 𝑡 = 1, 2,… , 𝑇 and our dependent variable 
is flow rate 𝑞". As one can see, these models have different coefficients, although some share common 
ones (e.g., initial flow rate 𝑞$). 

Despite the inherently temporal nature of production histories, there exists little published work that 
applies time series statistics to modeling and forecasting of well production rates. A few studies have 
applied time series statistics (ARIMA modeling) to production (Ayeni and Pilat 1992; Ediger et al. 2006; 
Yusof et al. 2010). Machine learning offers another source of improvement beyond decline curves. There 
has been some work exploring the application of nonlinear autoregressive neural networks with exogenous 
inputs (NARX networks) to production data (e.g., Sheremetov et al. 2014). In another example, Frausto-
Solís et al. (2015) forecast oil production with a “Simulated Annealing based on Machine learning” 
approach. Cheng et al. (2010) examine the autocorrelation of residuals (after fitting Arps’ hyperbolic 
model), but only in order to determine the appropriate block size for a block bootstrapping approach to 
probabilistic forecasting. No discussion is given to the effect of autocorrelated error on the estimation of 
the decline curve parameters, and no attempt is made to model this autocorrelation structure in the 
residuals. 

Autocorrelation, 𝜌(ℎ), refers to the degree which an observation at time, 𝑥", depends on any previous 
observations, 𝑥"1L, where ℎ is called the “lag”. Autocorrelation can be estimated from a sample by 

𝜌̂ (ℎ) = N̂(L)
N̂(O)

, ………………………………………………………………………………………… (7) 

where 𝛾(ℎ) is the autocovariance at lag ℎ. It is estimated by 

𝛾 (ℎ) = 𝑛12 ∑ (91L
"R2 𝑥"SL − 𝑥)(𝑥" − 𝑥), …………………………………………………………….. (8) 

where 𝑥 is the sample mean of 𝑥. Much of the dependency of production rates on time is described by 
any one of the decline curves above. However, this paper shows that significant autocorrelation can exist 
in the residuals after fitting a decline curve. This finding is important for two main reasons: 1) estimators 
of decline curve parameters that do not consider this autocorrelated error are inefficient; and 2) this 
autocorrelation in the residuals can be modeled and added to the decline curve fit, leading to a better 
performing model of production decline. 

To elaborate on the first reason, consider the linear regression equation: 
𝑦" = 𝛽V𝑥" + 𝜀". ……………………………………………………………………………………... (9) 
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An implicit assumption in fitting this equation (by least squares or maximum likelihood) is that the 
error at each time, 𝜀", is independently and identically distributed (i.i.d.), which leads to the ordinary least 
squares (OLS) estimator for the coefficients 𝛽 being 

𝛽̂ = (𝐗V𝐗)12𝐗V𝐲. ………………………………………………………………………………….. (10) 
This assumption is broken when the residuals display autocorrelation, which implies dependency 

between times. While this doesn’t theoretically introduce any bias in the estimation of the coefficients, it 
does make their estimation inefficient, which means that the variance of the estimated value is not minimal 
(Cochrane and Orcutt 1949). One can mitigate this inefficiency through “generalized least squares” 
regression, in which the correlation structure of the error is specified. The OLS estimator above then 
becomes 

𝛽̂ = (𝐗VΣ12𝐗)12𝐗VΣ12𝐲. …………………………………………………………………………. (11) 
This is the generalised least squares (GLS) estimator of the linear regression coefficients, in which the 

covariance matrix Σ contains the serial autocorrelation in the off-diagonal elements (the diagonal elements 
contain the variance of 𝜀"). If Σ is unknown (which it usually is), one can estimate it by exercising Eq. 8 
on the residuals from the OLS regression. This same premise holds true for nonlinear regression with 
nonlinear least squares (NLS) (Gallant and Goebel 1976), which is used in fitting all decline models 
presented above, except Arps’ Exponential model, which can be linearized. 

Generalized (nonlinear) least squares only pertains to the estimation of the regression coefficients. Even 
after estimating the coefficients in this manner, the residuals may still contain autocorrelation. Such 
structure can be modeled and incorporated in the decline curve, say in an additive way. Suppose we 
generically define the decline curve as 𝑓(𝑡; 𝜃), where 𝜃 is the vector of decline curve parameters we wish 
to estimate, then our regression equation is 
𝑞" = 𝑓(𝑡; 𝜃) + 𝑒". ………………………………………………………………………………… (12) 

If we know that 𝜀" is at least partially composed of an autocorrelated signal, we can capture that signal 
with an autoregressive model of order 𝑝 (AR(𝑝)): 
𝑒" = 𝜙2𝑒"12 + 𝜙>𝑒"1> +⋯+ 𝜙a𝑒"1a + 𝑤", ……………………………………………………… (13) 

where now 𝑤" is i.i.d. Gaussian white noise with zero mean. Alternatively, the moving average model of 
order 𝑞 (MA(𝑞)), treats the signal as a linear combination of white noise terms: 
𝑒" = 𝑤" + 𝜃2𝑤"12 + 𝜃>𝑤"1> + ⋯+ 𝜃c𝑤"1c. ……………………………………………………... (14) 

The mixed autoregressive moving average (ARMA) model is then: 
𝑒" = 𝜙2𝑒"12 + 𝜙>𝑒"1> +⋯+ 𝜙a𝑒"1a + 𝑤" + 𝜃2𝑤"12 + 𝜃>𝑤"1> +⋯+ 𝜃c𝑤"1c, ……………….. (15) 

where 𝜙a ≠ 0 and 𝜃c ≠ 0, and the time series 𝑒" is stationary (Shumway and Stoffer 2010). 
While these theoretical points should be taken into consideration when fitting decline curves to 

production data, whether they afford any practical benefit remains to be tested. This is the primary goal 
of this paper: to perform a thorough comparative quantitative analysis between the traditional regression 
procedure for decline curves (OLS or NLS) and 1) regression via generalized (nonlinear) least squares 
(GLS or GNLS), 2) additive inclusion of an ARMA model with the decline curve, and 3) the combination 
of GLS/GNLS with ARMA-modeled residuals. 

Another goal of this paper is to demonstrate the proposed improvements to DCA on a BIG dataset. 
Doing so gives a more convincing validation of the research than on a small dataset, which may appear to 
be preferentially selected to give a favorable validation. Working with BIG data also increases the 
potential for observing patterns that may not be apparent in smaller datasets, such as trends in behavior 
across a play, and exploring the limitations of the methodology at hand. To this end, I use all viable gas 
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production histories from the Marcellus shale, which totals 610,192 monthly rate observations from 8,527 
wells. 

 
Methodology 

The goal of this paper is to investigate the effect that the inclusion of autoregressive and/or moving 
average terms may have on decline curve performance, not only in terms of decline curve parameter 
estimation via generalized least squares (GLS) or generalized nonlinear least squares (GNLS), but also in 
terms of ARMA modeling of the residuals. The overall methodology to make these comparisons is as 
follows: 

1. Fit decline curve by OLS (Arps’ exponential) or NLS (hyperbolic, logistic growth, power law 
loss ratio, stretched exponential, and Duong’s model) to training data, 𝑞"ef$9  

2. Calculate residuals, 𝑒"ef$9 = 𝑞"ef$9 − 𝑞"ef$9, where 𝑞"ef$9 are the predictions from the fitted 
decline curve 

3. Iteratively fit ARMA models of varying order to the residuals to get optimal orders, 𝑝 and 𝑞 
4. Re-fit decline curve by GLS (exponential model) or GNLS (all other models) with ARMA(𝑝,𝑞) 

correlation structure 
5. Repeat step 3 on residuals from GLS/GNLS fit 

Thus, there are four distinct outputs whose performance needs to be evaluated: 1) the base model from 
step 1, 2) the base model combined with the ARMA-modeled residuals from step 3, 3) the GLS/GNLS fit 
model, and 4) the GLS/GNLS fit model with the ARMA-modeled residuals from step 5. The latter three 
are tested against the first (base case). To evaluate performance, all regressions in this paper are performed 
on the first 24 months of data from each well for the training data, and the fitted decline model forecasts 
are compared to the remainder of the record at each well. In practice, one would use all available data in 
𝑞"ef$9 . 

To elaborate more on these steps, in the first step, Arps’ exponential model can be fit with OLS after 
taking the natural log transform of Eq. 1. However, all other decline curve models considered in this paper 
cannot be linearized and required NLS in order to estimate the decline parameters. Here, the Levenberg-
Marquardt fitting algorithm gives relatively robust results, conditional on the convergence tolerance and 
maximum number of iterations allowed. 

In steps 3 and 5 above, the orders 𝑝 and 𝑞 of the ARMA models are determined by iteratively fitting 
models of varying order and taking the one with the best AIC. Orders of 𝑝 = 0, 1, 2,… , 5 and 𝑞 =
0, 1, 2,… , 5, as well as all combinations, are explored. It is worth noting at this point that one could attempt 
to model these residuals with other explanatory variables, such as those related to the operation of the well 
(e.g., re-fracking events, choking of the well, etc.), but such data were not available for this analysis. 
 
Data and Results 
Marcellus Shale Dataset. 

The West Virginia Geologic and Economic Survey (WVGES 2018) and DrillingInfo supply monthly 
production histories, along with various metadata, for these wells. Out of an initial population of 15,990 
wells, only 8,527 have suitable data for decline curve analysis. This subset was determined after filtering 
and cleaning the production histories to remove data before the stated completion dates, removing 
probable partial observations (months where not all days exhibited production), removing zeros, and 
keeping only a continuous record of gas rates until the first (if any) gap in the record. Furthermore, after 
all these pre-processing steps, only records with more than 24 months of data were retained, in order to 
have a sufficient number of data points for robust curve fitting and to retain some testing data for assessing 
forecasting accuracy. 

 
Example with Duong’s Model. 
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We start with a detailed illustration focusing on Duong’s model exercised over all available Marcellus 
shale gas wells. First, a comparison is made between two methods of fitting Duong’s decline curve model: 
the prescribed step-wise ordinary least squares (OLS) procedure (as outlined in Duong (2011)) and a non-
linear least squares (NLS) procedure. Figure 1 compares the sum of squared residuals (SSR) from these 
two approaches, as fit to the 8,527 Marcellus records. For any one record, the better fitting model will 
give the smaller SSR, defined as: 

𝑆𝑆𝑅 = ∑ (j" 𝑞" − 𝑞")
>. ………………………………………………………………………………(16) 

The NLS approach generally gives lower SSR than the OLS approach, with some exceptions (the vast 
majority of points fall below the 1:1 line in Figure 1). This indicates that NLS fits Duong’s decline model 
to the data better than the standard OLS approach. 

 
Figure 1. Sum of squared residuals from the non-linear least squares fitting approach versus sum of squared residuals from the 
traditional step-wise OLS approach. The diagonal line is the 1:1 (𝒙 = 𝒚) line. 

 
Furthermore, because it fits the data better, the NLS fitting method yields less serial autocorrelation in 

the residuals, 𝑒. The Durbin-Watson test statistic serves as a metric for the significance of sample 
autocorrelation values (in this case, we only look at lag-1 autocorrelation, or the correlation between 
consecutive observations in time): 

𝐷𝑊 = ∑ (n
opq ro1roCB)q

∑ roqs
opB

. ………………………………………………………………………………..(17) 

The value for 𝐷𝑊 is between 0 and 4, with smaller values indicating increasing positive autocorrelation 
and larger values indicating increasing negative autocorrelation (𝐷𝑊 = 2 indicates no autocorrelation). 
Figure 2 shows that the NLS fitting approach generally gives larger 𝐷𝑊 values than the OLS approach, 
again with some exceptions (majority of points fall above the 1:1 line, with few below). Thus, the bias 
introduced through the comparatively poor fits of the OLS approach gives greater positive autocorrelation 
in the residuals. 
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Figure 2. Durbin-Watson test statistics for the lag-1 autocorrelation value from the non-linear least squares fitting approach versus 
the traditional step-wise OLS approach. The diagonal line is the 1:1 (𝒙 = 𝒚) line. 
 

Although the NLS fitting approach reduces the magnitude of serial autocorrelation in the decline curve 
residuals, there is still considerable autocorrelation in a significant proportion of the well production 
histories. In Figure 2, 2946 points fall below 𝐷𝑊 = 1, which is generally accepted as critically low, for 
the NLS approach (or approximately 35% of the 8,527 wells). 

With the NLS regression established as the superior fitting procedure in the baseline case (over OLS), 
we can proceed to investigate the improvements afforded by GNLS regression and ARMA modeling of 
the residuals. For the rest of the analysis, the first 24 months of every well production history is used for 
model fitting, while the remainder of the record is reserved for validation (calculation of mean absolute 
percent error below). The next step is to fit an ARMA model to the calculated residuals from the NLS 
regression of Duong’s model. Figure 3 shows the distributions of autoregressive order 𝑝 and moving 
average order 𝑞 from fitting ARMA models to the Duong model residuals. While the case 𝑝 = 0 and 𝑞 =
0 are predominant (as would be expected from the DW results above), there are significant numbers of 
𝑝 = 1 and 𝑞 = 1 instances. There are a very small number of higher-order AR and MA components. 
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Figure 3. Bar charts of values for 𝒑 and 𝒒 after fitting ARMA models to the residuals from Duong’s model. 

 
GNLS regression of Duong’s model is run on all production records with any non-zero 𝑝 or 𝑞 value (if 

both 𝑝 = 0 and 𝑞 = 0, then there is no serial autocorrelation structure to specify and GNLS regression 
reduces to a weighted least squares regression). Separately, the fitted ARMA model from the OLS/NLS 
residuals is added to the OLS/NLS decline curve fit (as in Eqs. 12-15). Figure 4 shows an example of 
these different fitting procedures for Duong’s decline curve model, where those methods incorporating 
ARMA-modeled residuals fit the training data (before and including 24 months) better and, in this case, 
the use of GNLS gives better agreement with the testing data (better forecasts). The effect of these two 
procedures is measured by two performance metrics: 1) SSR, which indicates the goodness-of-fit to the 
training data (first 24 months), and 2) mean absolute percent error (MAPE), which assess the predictive 
accuracy of the model forecasts on the reserved testing data (after 24 months). SSR is defined in Eq. 16 
(except now the summation is only over the first 24 months), and MAPE is defined as 

𝑀𝐴𝑃𝐸 = 2
j1>z

∑ 100j
"R>z % |co1ĉo

co
| ……………………………………………………………….. (18) 

for this application. Figure 5 shows the SSR and MAPE values for all the wells fit with Duong’s model 
plotted by whether they incorporate ARMA-modeled residuals or not (“w/ ARMA” versus “w/o ARMA”) 
and also by whether they use GNLS or not (“GNLS” versus “NLS”). Here we see that including the 
ARMA-model generally gives a better fit (lower SSR) and a better forecast (lower MAPE), whereas the 
use of GNLS generally gives a worse fit (higher SSR) and worse predictive accuracy (higher MAPE).  
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Figure 4. An example from well API 37-051-24154. The vertical black line is at 𝒕 = 𝟐𝟒 months, representing the cut-off between training 
and testing data points. 
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Figure 5. Plots showing performance metrics (SSR and MAPE) from all wells fit with Duong’s model and with 𝒑 > 𝟎 or 𝒒 > 𝟎. The 
performance metrics are plotted by the proposed fitting improvements (with ARMA and using GNLS for the regression) against the 
baseline case (no ARMA modeling of residuals and using NLS for the regression). The grey line is the 1:1 (𝒙 = 𝒚) line. 
 

Paired t-tests assess the statistical significance of these patterns. Since each well gives performance 
metric values in all categories (w/ ARMA, w/o ARMA, GNLS, NLS), pairing by well and taking the 
difference of metric values at this level gives a more powerful hypothesis test. Furthermore, since we want 
to test whether the model fitting procedures are making an improvement, one-sided tests are appropriate. 
Specifically, with our null hypotheses being that there is no change in MAPE or SSR with the inclusion 
of ARMA-modeled residuals or with using GNLS, our alternative hypotheses are that MAPE and SSR are 
lower with these fitting methods than without ARMA and without GNLS. All tests are conducted at a 95% 
confidence level. Table 1 presents the estimates of the mean of differences and their associated p-values 
from these tests. These values agree with the patterns seen in Figure 5. SSR is significantly greater without 
ARMA-modeled residuals but there is no evidence that this is the case with NLS (in fact the negative 
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mean of differences here suggests GNLS gives worse fits). Similarly, MAPE is significantly greater 
without ARMA-modeled residuals, by 2605% on average, but again GNLS appears to give worse 
forecasts (this mean percent may seem excessively large, but it is likely influenced by extreme positive 
outliers in the difference). Additionally, Table 1 contains the one-sided paired t-test results for GNLS with 
ARMA-modeled residuals versus the base fitting procedure: NLS without ARMA-modeled residuals (in 
other words, looking at the combined effect of GNLS and ARMA). For both MAPE and SSR, Duong’s 
decline model fit with GNLS and including the ARMA-modeled residuals does not give statistically 
significant better performance over just Duong’s model fit with NLS. This is likely due to the worse fits 
from the GNLS procedure outweighing any benefit gained from the ARMA modeling of the residuals, 
which comes after and therefore depends on the GNLS fit (refer to step 5 in Methodology). 

 
Table 1. One-sided paired t-test results for MAPE and SSE calculated over all decline models and at all viable well records. In each 
cell, number on top is the estimate of the mean of differences and the number in parenthesis is the p-value. Significant values (p-value 
< 0.05) are colored red. 

 
Extension to Other Decline Curves 

The same comparative procedure made on Duong’s decline curve model above is applied to five other 
decline curves: Arps’ Exponential (Exp), Hyperbolic (Hyp), Power Law Loss Ratio (Pow), Stretched 
Exponential (Str), and Logistic Growth (Log). Again, the Exponential model uses OLS and GLS, whereas 
all other models use the nonlinear variants. The same steps outlined in the Methodology are applied to all 
8,527 Marcellus wells for all decline curves. The frequency of orders 𝑝 and 𝑞 of ARMA models for the 
six different decline curves are shown in Figure 6. Here, all other models show a similar distribution of 𝑝 
and 𝑞 to Duong’s model, with zero-order values being predominant, but 𝑝 = 1 and 𝑞 = 1 also having a 
significant occurrence. 
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Figure 6. Stacked bar chart of ARMA order values, 𝒑 and 𝒒. 

 
Furthermore, the same one-sided paired t-tests as used for Duong’s model above are run on the results 

from the other decline curves, and the results are presented in Table 1. In support of Table 1, and in lieu 
of the sort of scatterplots in Figure 5, Figure 7 shows boxplots of the raw SSR and MAPE values, 
organized by decline curve type and fitting procedure. However, the main conclusions should be drawn 
from the t-tests (Table 1), because these boxplots do not pair the data by well. In Table 1, we see that 
including ARMA-modeled residuals always improves the fit to the training data (all models have positive 
estimates of mean of differences for SSR for the alternative hypothesis that “w/o ARMA > w/ ARMA”, 
and these estimates are all statistically significant, some drastically so). The decline curves only gain 
benefits to their forecasting ability (in terms of MAPE) sporadically; in addition to Duong’s model having 
a lower MAPE for the “w/ ARMA” case, the Hyperbolic model also benefits from including ARMA-
modeled residuals, whereas the Logistic Growth model has lower MAPE when fitting with GNLS. The 
Logistic Growth model seems to benefit the most out of all six decline curve models, where GNLS, 
ARMA, and GNLS plus ARMA all improve the goodness-of-fit and forecasting accuracy, except for the 
“w/ ARMA” case under MAPE. 
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Figure 7. Box plots of SSR and MAPE values for all viable Marcellus production histories after fitting each decline curve model under 
the various combinations of NLS versus GNLS and with ARMA-modeled residuals and without. The 𝒚 axes have been clipped from 
1e1 to 1e16 for SSR and from 1 to 1000 for MAPE in order to exclude outliers and get a better view of the majority of the data. 

 
 

Conclusion 
The main conclusion to be drawn from the analysis in the paper is that, after fitting a decline curve, its 

goodness-of-fit can be greatly improved most of the time if the residuals are fit with an ARMA model and 
this ARMA model is added to the fitted decline curve. However, fitting past data better does not have 
much practical utility, at least in terms of production forecasting and estimation of EUR. This same 
treatment of including ARMA-modeled residuals only improves the forecasting accuracy of Duong’s 
model and the Hyperbolic decline curve. Furthermore, estimating decline curve parameters via 
generalized (nonlinear) least squares as opposed to ordinary or nonlinear least squares only helps the 
Logistic Growth model achieve better goodness-of-fit and forecasting accuracy. A tangential conclusion 
made from the analysis in this paper is that Duong’s model is generally fit better using nonlinear least 
squares than using the prescribed step-wise ordinary least squares procedure from Duong (2011). 

It is possible that the results obtained in this study could dramatically change with larger training data, 
as may be used in practice. That is, the choice of 24 months worth of training data may have a large 
influence on the results, and setting this cutoff to a later time would sample more production rates under 
boundary-dominated flow conditions and the resulting fitted decline curve would represent that behavior 
better (and project it into the future). It would be worth repeating the analysis in this study over a variety 
of different training/testing partitions, as is done in Cheng et al. (2010). 
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Furthermore, in order to achieve a high level of statistical power, this study uses a BIG dataset of the 
entire population of Marcellus shale wells. Consequently, the fitting procedures in this paper were carried 
out in an automated fashion, where the algorithms used for the nonlinear least squares and generalized 
nonlinear least squares regressions are somewhat sensitive to the chosen starting values, convergence 
tolerances, and number of maximum iterations. While great effort was made in this analysis to find good 
heuristics for the starting values of each decline curve model, these could be suboptimal for some wells. 
Similarly, the global values used for convergence tolerance and maximum number of iterations may not 
have been appropriate for all wells. It is possible that different results may be achieved, and conclusions 
drawn, if one were to manually tailor these settings to each individual well. Nevertheless, the algorithms 
worked sufficiently for the majority of cases and I believe the conclusions are robust to the cases where 
they may have performed suboptimally. 
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